Operation Trebuchet: Efficiency of the Floating Arm

Tyler Thibodeau, Drew Prosser, Kevin Chan, and Jack Stevenson

31 May 2011 Governor's School for Science and Technology

Acknowledgement

• Dr. Truong Le

For his guidance on research presentation

Outline

- Background Information
- Theory & Diagram
- Applications
- Experimental Results
- Discussion & Conclusions
- Future Work

Background

- Trebuchet
 - Uses falling mass
 - Floating-arm configuration
- Calculate efficiency
 Based on distance thrown

Model

Converts potential energy to kinetic energy

 $E_k = U$ $\frac{1}{2}m_2v^2 = m_1gh$

Projectile motion after launch

 $x = v \cos(\theta) t \qquad \qquad y = v \sin(\theta) t - \frac{1}{2}gt^2$

• Derivations yield

 $x = \frac{2m_1h}{m_2}$ • To calculate efficiency $\frac{Actual}{Theoretical} \times 100$

Physical Model Sketch

Physical Model Dimensions

Application

• Efficiency now known

- Develop more efficient trebuchets

 Less friction
- Base to verify physical equations

Results

Mass	Trial					
	One	Two	Three	Four	Five	Average
22.26 kg	22.6 m	35.7 m	20.1 m	N/A	N/A	26.1 m
24 kg	33.5 m	39.6 m	34.1 m	32.9 m	38.7 m	35.8 m
26.2 kg	39.6 m	37.5 m	32.9 m	37.8 m	N/A	37.0 m

Results (cont.)

Mass	Theoretical Value	Actual Value	Efficiency
22.26 kg	338 m	26.1 m	7.7 %
24 kg	365 m	35.8 m	9.8 %
26.2 kg	398 m	37.0 m	9.3 %

Discussion

• Very low efficiency

• Greater mass = farther distance

- Unreliable launches affect results
 - Misfires
 - High variability

Conclusion

- Majority of energy used up
 - Overcome friction
 - Air resistance
 - Rotational energy of the arm
- Reduce friction/surface contact
 Would yield greater efficiency

Future Work

- Create a more efficient trebuchet
 - Reduce friction
 - Lower mass of throwing arm
- Use a heavier projectile

 May allow for more consistency
 Also may be more efficient